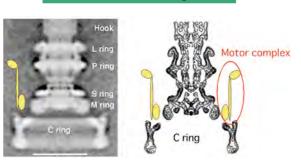
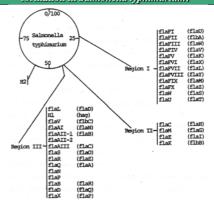
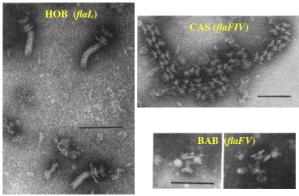

べん毛の単離プロトコール

- 1) 菌体の回収(低速遠心)
- 2) しょ糖を含む緩衝液にいれる
- 3) リゾチーム処理+ EDTA
- 4) トリトンX-100処理
- 5) MgSO₄+DNase
- 6) EDTA
- 7) 低速遠心
- 8) 10万gで遠心
- 9) 沈殿をバッファーに懸濁

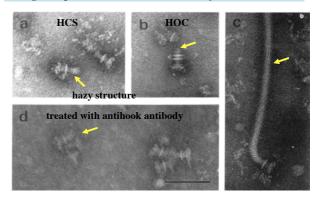

生化学で用いられる界面活性剤

Electron micrographs of hook-basal body and C-ring structure (red arrows)


Motor Structure of flagella


べん毛形成過程のモデル

Chromosomal map of the ganes essential for flagellar formation in Salmonella typhimurium.



Flagellar partial structures I

Suzuki et al., J. Bacteriol. (1978)

Flagellar partial structures II: from a flaFVIII mutant

Suzuki et al., J. Bacteriol. (1978)

Flagellar partial structures III

Suzuki et al., J. Bacteriol. (1978)

Determination	Structural entity										
	IF	нов	BAB	CAS	RIV	RCT	HCS	HRV	нос		
Flagellate parent	++*	+"	+	+ or -d	+	+ or -	-	-	- L		
H1-, H2-	-	++	+	+ or -	+	-	_	-	-		
flaL	-	++	+	+ or -	+	-	_	-			
flaU	-	++	+	+ or -	+	-	_	_	-		
flaR	-	++*	+	+ or -	+		-	-	_		
flaFV	-	-	+	+	++	++	_	_	-		
flaFVIII	-		-	+	+	-	++	+ or -	+		
laFI	-	-	-	-	++	-	-	++	-		
flaFIX	-	-	-	-	++	-	-	++	_		
flaFIV	-	-	-	++	+	-	-	-	_		
flaAI	-	-	-	-	-	-	_	-	_		
flaAII	-	-	-	-	-	-	-	-	-		
(motC)	++/	+	+	+ or -	+	-	-	-	-		
RaAIII	-	-	-	-	-	-	-	-	_		
flaB	_	_	-	-	-	-	_	_	-		
flaC		-		-	-	-	-	-	-		
flaD	-	-	-	-	-	_	_	_	-		
flaE	-	-	-	-	-	-	_	_	_		
laFII	-	-	_	-	-	-	-	- 1	_		
laFIII	-	-	-	-	-	_	_	_	_		
laFVI	_	-	_	-	-		_	_	-		
laFVII	-	_	_	_	-	-	-	_	_		
RaFX	-	-	-	_	-	_	_	_	_		
laK .	_	_	_	_	_						

- "The frequencies of IF and flagellar basal structures detected in fraction BMII of flagellate parents and
- nonflagellate mutants are shown.

 *++, The count of each structural entity from % to 5× the count of IF in its flagellate parent
- *++. The count of each structural entity from % to 5x the count of IF in its flagellate parent.

 *-, The count of each structural entity from % to 8 the count of IF in its flagellate parent.

 *-, The count of each structural entity less than 1/6x the count of IF in its flagellate parent.

 *-, The count of each structural entity less than 1/6x the count of IF in its flagellate parent.

 *-, The count of each structural entity less than 1/6x the count of IF in its flagellate parent.

 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

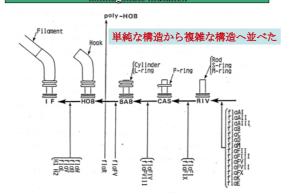
 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

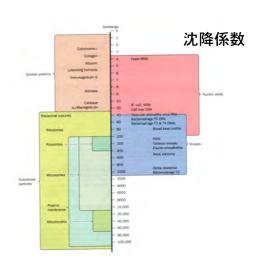
 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

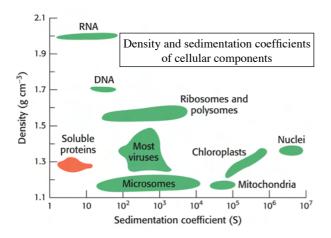
 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

 *-, The count of each structural entity from % to 8x the count of IF in its flagellate parent.

 *-, The count of each structural entity from % to 9x the count of IF in its flagellate parent.


 *-, The count of each structural entity from % to 9x the count of IF in its flagellate parent.


 *-, The count of each structural entity from % to 9x the count of IF in its flagellate parent.


 *-, The count of each structural entity from % to 9x the count of IF in its flagellate parent.

 *-, The count of each st
- Paralyzed flagella, which were not discriminated morphologically from the IF of their flagellate parent

Stepwise process of flagellar morphogenesis in Salmonella inferred from the flagellar structures detected on nonflagellate mutants.

超遠心ローター

超遠心機

東空方式: 東空方式: 海回転真空ポンプ+油拡散真空ポンプ 調趣圧力0.13Pa以下 駆動部保証: 完全10年間 冷却方式: フロンレス、サーモモジュール帝郷システム 表示 大きさ(mm): (W)790×(D)690×(H)1,000 質量(Kg): 400 標準価格(円):

遠心分離 I

遠心力

r = 10 cm

角速度 $(rad \cdot s^{-1}) = \omega = d\theta/dt$

加速度 = α= r ω² 半径 = r

加速度 g = 9.8 m/ s² 6,000 rpm ⇒0.1 · (2π · 100)²= 39,438 m/s² = 4,024 g 30,000 rpm ⇒0.1 · (2π · 500)² = 985,960 m/s² =100,608 g

沈降力 は 遠心力から 浮力を引いたもの $F_s = m\omega^2 r - Vp \rho \omega^2 r$

Vp = 体積 ρ = 溶液の密度 m = 衡量

v = 粒子の沈降速度 f = 摩擦係数 摩擦力 F_f = vf

粒子の沈降速度は沈降力と摩擦力が釣り合うまで加速する m = M(分子量) / N(アボガドロ数)

従って $m\omega^2 r$ — $Vp\rho\omega^2 r = vf$ _ V = 偏比容≒密度の逆数

 $V_p = \overline{V}m = \frac{\overline{V}M}{N}$

1gの粒子を無限大溶溶媒に溶 かしたときの溶液増加

2 0 °CのDWに蛋白質を溶かしたとき⇒約0.73cm³g⁻¹

遠心分離 II

Vp = V·m; V = 偏比容≒密度の逆数

$$V_p = \overline{V}m = \frac{\overline{V}M}{N} \qquad \text{of} \quad \frac{M(1 - \overline{V}\rho)\omega^2 r}{N}$$

沈降係数 s を定義する 10⁻¹³s = 1S(スドベリ) として表す

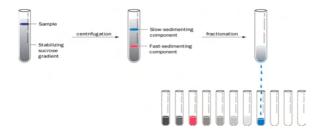
$$s = \frac{v}{\omega^2 r} = \frac{1}{\omega^2} \left(\frac{d \ln r}{dt} \right) = \frac{M(1 - \overline{V}\rho)}{Nf}$$

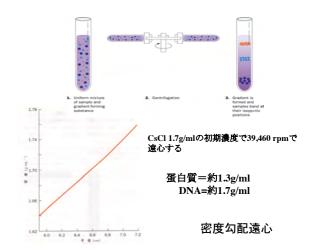
加速度に対する粒子の沈降速度

半径 r の粒子のf (摩擦係数) はストークの式で計算される

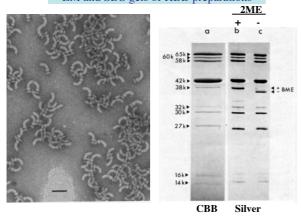
η= 粘度 $f = 6\pi \eta r_p$

fと fo (最小摩擦係数:水和していない球体) を求めることで分子形が推定出来る

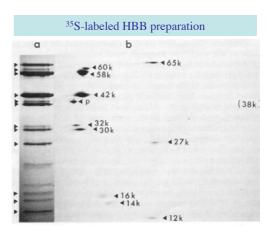

Table 6-5 Physical Constants of Some Proteins.


Protein	Molecular Mass (kD)	Partial Specific Volume, $\overline{V}_{20,w}$ (cm ³ · g ⁻¹)	Sedimentation Coefficient, s _{20,w} (S)	Frictional Ratio, f/f ₀ 1.190 1.066 1.190 1.105
Lipase (milk)	6.7	0.714	1.14	
Ribonuclease A (bovine pancreas)	12.6	0.707	2.00	
Cytochrome c (bovine heart)	13.4	0.728	1.71 2.04	
Myoglobin (horse heart)	16.9	0.741		
α-Chymotrypsin (bovine pancreas)	21.6	0.736	2.40	1.130
Crotoxin (rattlesnake)	29.9	0.704	3.14	1.221
Concanavalin B (jack bean)	42.5	0.730	3,50	1.247
Diphtheria toxin	70.4	0.736	4.60	1.296
Cytochrome oxidase (P. aeruginosa)	89.8	0.730	5.80 7.31	1.240 1.330
Lactate dehydrogenase H (chicken)	150	0.740		
Catalase (horse liver)	222	0.715	11.20	1.246
Fibrinogen (human)	340	0.725	7.63	2.336
Hemocyanin (squid)	612	0.724	19.50	1.358
Glutamate dehydrogenase (bovine liver)	1015	0.750	26.60	1.250
Turnip yellow mosaic virus protein	3013	0.740	48.80	1.470

Smith, M.H., in Sober, H.A. (Ed.), Handbook of Biochemistry and Molecular Biology (2nd ed.), p. C-10, CRC Press (1970).


Figure 6-30 Zonal ultracentrifugation.

- (1) ゾーン超遠心分離法(ショ糖密度勾配) (2) 平衡密度勾配超遠心分離(CsCI密度勾配)


EM and SDS gels of HBB preparations

等電点電気泳動:小分子量 (300~600D) のオリゴマーで等電点の連続的に異なるものを作り (キャ リアーアンフォライト)、電圧をかける。尿素を加えることが多い。

Figure 6-26 General formula of the ampholytes used in isoelectric focusing.

-CH2-N-(CH2)n-N 2次元電気泳動 (CH₂)n (O'Farrellの電気泳動) アンホライト (両性電解質) 大腸菌を[¹⁴C]アミノ 酸でラベルし、電気 泳動後、オートラジ オグラフィーで検出

Aizawa et al., J. Bacteriol. (1985)