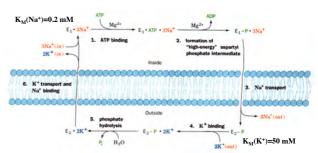

Transport of glucose by the PEP-dependent phosphotransferase system (PTS).

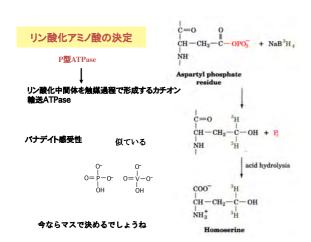
Na+•K+-ATPase (P型ATPase)

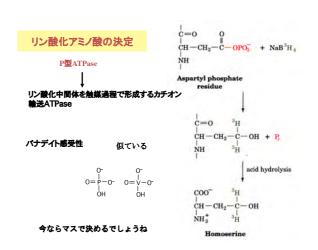
1957年 Jens Skouにより発見 1997年にノーベル賞

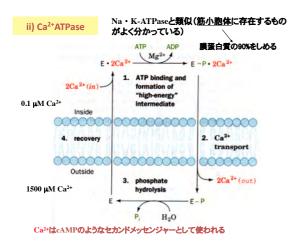


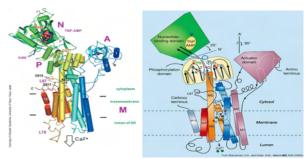
ジキタリス (ムラサキキツネノテブクロ,ゴマノハグサ科) ウワバイン=ステロイド配籍体

強心剤として使用 Na+濃度が上昇し、Na+/Ca²⁺アンチポート系が活性化し、Ca²⁺濃度が上昇し、その結果、筋肉収縮が起こる。

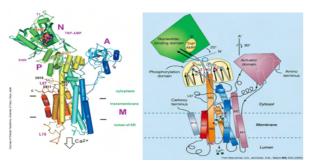

Na⁺/K⁺ ATPaseの能動輸送機構




1ATPaseあたり毎秒100分子のATPを分解

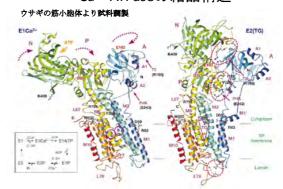

Û

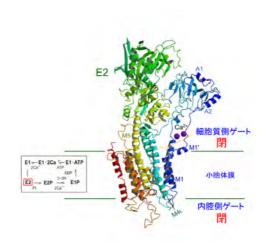
細胞の作る約1/3 (神経では70%?) のATPが消費される



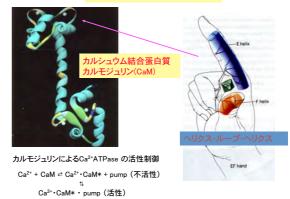
(a) A tube-and-arrow diagram.

(b) A schematic diagram of the structure


X-Ray structure of the ${\rm Ca^{2+}\!\!\!\!-\!\!\!\!\!-} ATPase$ from rabbit muscle sarcoplasmic reticulum.


(a) A tube-and-arrow diagram.

(b) A schematic diagram of the structure


Ca²⁺-ATPaseの結晶構造

Toyoshima & Nomura (2002) Nature

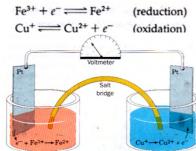
カルモジュリンの構造

iii) H+•K+-ATPase (P型ATPase)

胃粘膜上皮細胞で特異的に発現して、胃の酸性化を行う。

胃細胞外 胃細胞内

H+ pH 0.8 pH 7.4


ヒスタミンによって活性化される⇔⇒阻害剤、胃潰瘍の薬(cimetidime)

酸化還元反応

$$Fe^{3+} + Cu^+ \Longrightarrow Fe^{2+} + Cu^{2+}$$

酸化還元反応を2つの半反応式に分ける

基礎生化学IIIの

14. 代謝 で講義される予定

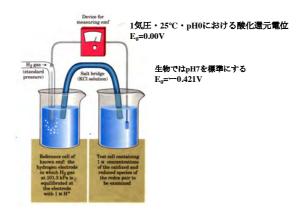
高エネルギー中間体と自由エネルギー

還元電位

少し触れておきます。

Nernst式

$$A_{ox}^{n+} + B_{red} \Longrightarrow A_{red} + B_{ox}^{n+}$$


$$\Delta G = \Delta G^{\circ} + RT \ln \left(\frac{[A_{red}][B_{ox}^{n+}]}{[A_{ox}^{n+}][B_{red}]} \right)$$

$$\Delta G = -n$$
 $\mathcal{F}\Delta \mathscr{E}$ n=反応にあずかる電子数 $F=ファラディー定数$

 ΔE は起電力or酸化還元電位であり、電子を押し出す力を示す

$$\Delta \mathscr{E} = \Delta \mathscr{E}^{\circ} - \frac{RT}{n\mathscr{F}} \ln \left(\frac{[A_{\text{red}}][B_{\text{ox}}^{n+}]}{[A_{\text{ox}}^{n+}][B_{\text{red}}]} \right)$$

標準酸化還元電位

酸素は最強の酸化剤 水は最弱の還元剤

生化学で重要な 標準酸化還元電位

pH7を標準にする

Standard Reduction Potentials of Some Biochemically Importan

Half-Reactions	
Half-Reaction	6"(V)
+ O ₂ + 2H* + 2e === H ₂ O	0.815
SO(-+2H++2r===SO(-+H ₂ O	0.48
NO; + 2H+ + 2e- === NO; + H ₂ O	0.42
Cytochrome a ₃ (Fe ³⁺) + e ⁻ === cytochrome a ₃ (Fe ²⁺)	0.385
$O_2(g) + 2H^+ + 2C \Longrightarrow H_2O_2$	0.295
Cytochrome a (Fe ³⁺) + e ⁻ === cytochrome a (Fe ³⁺)	0.29
Cytochrome c (Fe ³⁺) + c === cytochrome c (Fe ²⁺)	0.254
Cytochrome $c_1(Fe^{3+}) + e^- \Longrightarrow \text{cytochrome } c_1(Fe^{3+})$	0.22
Cytochrome b (Fe ³⁺) + e ⁻ === cytochrome b (Fe ³⁺) (mitochondrial)	0.077
Ubiquinone + 2H* + 2e⁻ === ubiquinol	0.045
Fumarate" + 2H* + 2e" === succinate"	0.031
FAD + 2H+ + 2e === FADH, (in flavoproteins)	~0.
Oxaloacetate + 2H+ + 2e == malate	-0.166
Pyruvate" + 2H* + 2e" ==== lactate"	-0.185
Acetaldehyde + 2H+ + 2€ === ethanol	-0.197
FAD + 2H+ + 2e7 === FADH, (free coenzyme)	-0.219
S+2H++2€ == H,S	-0.23
Lipoic acid + 2H* + 2e* === dihydrolipoic acid	-0.29
NAD* + H* + 2r === NADH-	-0.315
NADP+ + H+ + 2e- === NADPH	-0.320
Cystine + 2H+ + 2r === 2 cysteine	-0.340
Acetoacetate ⁻ + 2H ⁺ + 2e ⁻ === β-hydroxybutyrate ⁻	-0.346
H*+C==H4	-0.421
Acetate" + 3H+ + 2e" ==== acetaldehyde + H ₂ O	-0.581

Source: Mostly from Loach, P. A., in Fasman, G. D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. 1, pp. 123–130, CRC Press (1976).

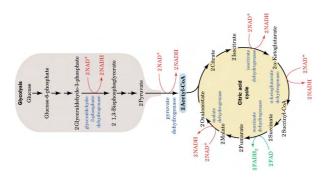
アセトアルデヒド還元の自由エネルギー変化

 $Acetaldehyde + NADH + H^{+} \longrightarrow ethanol + NAD^{+}$

この反応を2つの半反応式に分けることが出来る

(1) Acetaldehyde + $2H^+ + 2e^- \longrightarrow \text{ethanol}$ $E'_0 = -0.197 \text{ V}$ (2) $NAD^+ + 2H^+ + 2e^- \longrightarrow NADH + H^+$ $E'_0 = -0.320 \text{ V}$

全反応の酸化還元電位差は


 $\Delta E_0' = -0.197 \text{ V} - (-0.320 \text{ V}) = 0.123 \text{ V}$

自由エネルギーと酸化還元電位との関係式を使うと

 $\Delta G^{\circ\prime} = -n\mathcal{J}\Delta E_0' = -2(96.5 \text{ kJ/V} \cdot \text{mol})(0.123 \text{ V}) = -23.7 \text{ kJ/mol}$

全ての物質が一モル存在したときの 自由エネルギー変化が求まった

18. 電子伝達と酸化的リン酸化

The sites of electron transfer that form NADH and FADH₂ in glycolysis and the citric acid cycle.