
理系基礎:生物学基礎 ||

本間 10/2,9,16,23,30

高木 11/6,13,20,27, 12/4

多田 12/11,18,25 or 1/8,15,22

- (1)核酸 (2)リボ核酸 (3)デオ核酸 (4)リナ核酸 (5)リボキシ核酸 問2 DNAの構造決定をした人物は?
- (1) メンデル (2)ミーシャ (3)ワトソン (4)グリフィス (5)アベリー 問3 核酸は塩基と糖と(?)からなる。
- (1) 炭酸 (2)シュウ酸 (3)硫酸 (4)塩酸 (5)リン酸 問4 RNAにだけ含まれる塩基は?
- (1) チミン (2)アデニン (3)ウラシル (4)シトシン (5)グアニン 問5 DNAが主に存在する場所は?
- (1) 核 (2)ミトコンドリア (3)ゴルジ体 (4)細胞膜 (5)細胞質 問6 DNAを取り出す為に、食塩と(?)をつかう。
- (1)酢酸 (2)塩酸 (3)クロロホルム (4)ベンゼン (5)エタノール 問7 DNAの2重らせん構造を決めた方法は?
- (1)X線回折(2)電子線回折(3)中性子回折(4)質量分析(5)熱解析問8 グアニンと結合できるヌクレオチドは?
- (1) イノシン (2)シトシン (3)チミン (4)アデニン (5)ウラシル 問9 エンドウを使って遺伝法則を見つけた人は?
- (1)メンデル (2)ミーシャ (3)ワトソン (4)グリフィス (5)アベリー

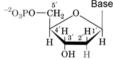
DNAの発見(1869)

メンデルの法則: 1865年、パスツール: 1822-1895年 ダーウィンの「種の起源」: 1859-1872年

J. F. Miesher (1844-1895)

- · Tübingen大学(独)、Hoppe-Sevler研究室
- ・白血球の核(膿から抽出)の成分を研究
- ・炭素、水素、酸素以外にリン、窒素、硫黄を含む物質を抽出 →ヌクレイン(nuclein)と命名 [核タンパク質(DNA-タンパク質複合体)に相当]
- ・酵母、サケ精子などからヌクレインを抽出(Basel大学)
- ・サケ精子ヌクレインから酸性物質(核酸、DNA)と塩基性物質(プロタミン)を分離(1874)(コッセルらによって研究が引き継がれた)

化学構造の研究(~1940年頃まで)

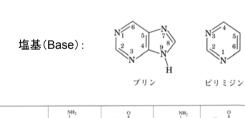

デオキシリボ核酸 (DNA; <u>d</u>eoxyribo<u>n</u>ucleic <u>a</u>cid) リボ核酸 (RNA; <u>r</u>ibo<u>n</u>ucleic <u>a</u>cid)

ヌクレオチド(nucleotide)

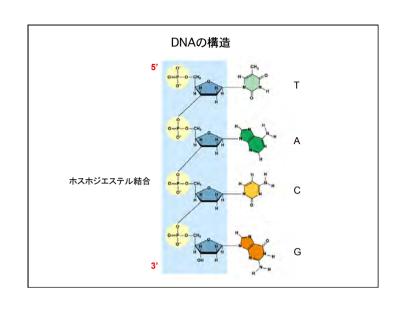
塩基+糖(リボース、またはデオキシリボース)+リン酸

DNAを構成するヌクレオチド

RNAを構成するヌクレオチド

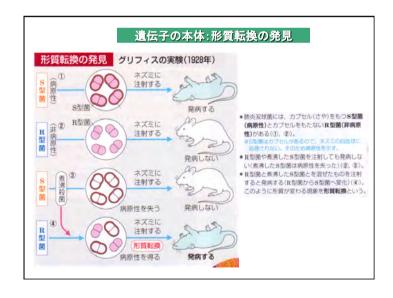

デオキシリボヌクレオチド

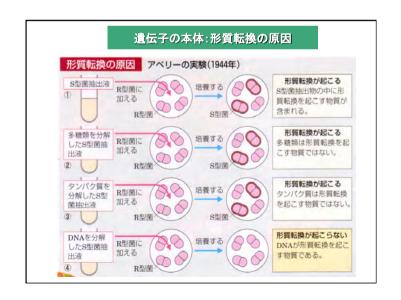
-2O₃PO-CH₂O H OH OH

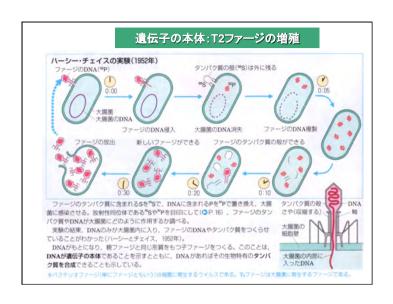

リボヌクレオチド

リン酸+2'-デオキシリボース+塩基

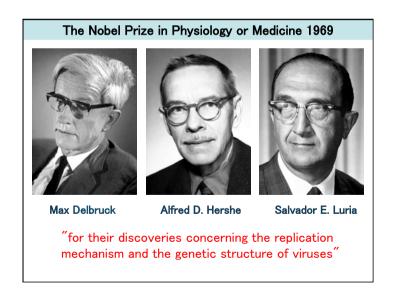
リン酸+リボース+塩基

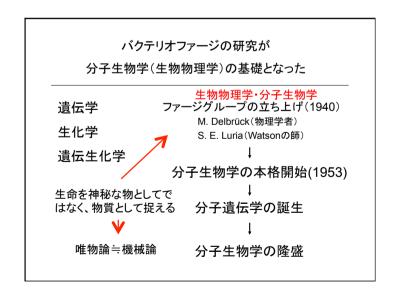

塩基の構造	NH2 N	H ₂ N N N	o NH;	H N X	H CH ₃
塩 基 X=H	アデニン Ade A	グアニン Gua G	シトシン Cyt C	ウラシル Ura U	チミン Thy T
スクレオシド X=リポース	アデノシン Ado A	グアノシン Guo G	シチジン Cyd C	ウリジン Urd U	デオキシチミジン dThd dT
ヌクレオチド X=リポースリン酸	アデニル酸 アデノシンーリン酸 AMP	グアニル酸 グアノシンーリン酸 GMP	シチジル酸 シチジン一リン酸 CMP	ウリジル酸 ウリジンーリン酸 UMP	デオキシチミジル酸 デオキシチミジン一リン酸 dTMP

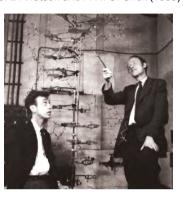



DNAの生物学的機能

20世紀前半まで


- すべての生物の細胞に存在する
- ・タンパク質とともに染色体を構成している
- ・染色体の骨格を形成する構造体ではないか
- 遺伝子はタンパク質で出来ているだろう





DNAの二重らせんモデル

J. D. Watson and F. H. C. Crick (1953)

The Nobel Prize in Physiology or Medicine 1962

James Dewey Watson

Maurice Hugh Frederick Wilkins

"for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material"

J. D. Watson (1928~)

シカゴ大学→インディアナ大学大学院 (1950年 学位取得) コペンハーゲン大学→ケンブリッジ大学 (1951年)

(→ハーバード大学、コールドスプリングハーバー研究所、ヒトゲノム研究センター)

F. H. C. Crick (1916~2004)

ロンドン・ユニバーシティカレッジ(物理学科)→海軍 →ケンブリッジ大学 (1947年)(生物学、X線結晶学)

(→Medical Reserch Council(英)→Salk Institute for Biological Studies(米))

遺伝子の働きを明らかにするためには DNAの構造解明が最も重要

ワトソンとクリックの戦略:模型作製

X線回折のデータ:

M. Wilkins, R. Franklin (King's college, London)

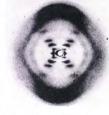
Chargaff の規則

A:T=1:1 G:C=1:1

化学的性質

ホスホジエステル結合、ケト型(G,T)、アミノ型(A,C)、 塩基間で水素結合

「二重らせん」

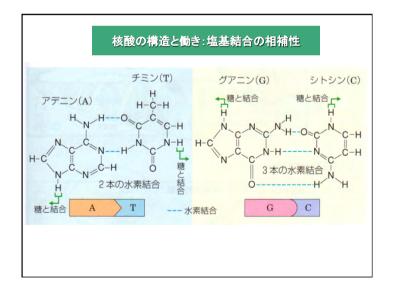

ジェームス・D・ワトソン(江上不二夫、中村桂子訳) 講談社文庫

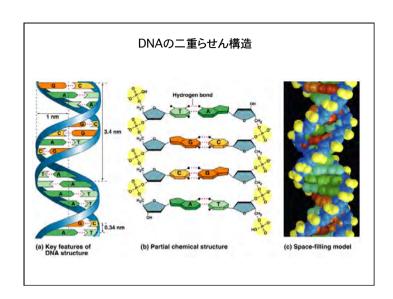
「DNA」(上·下)

ジェームス・D・ワトソン、アンドリュー・ベリー(青木薫訳) 講談社ブルーバックス

X線回折像

らせん構造 (二本鎖?三本鎖?) 直径: 2 nM ピッチ: 3.4 nM


(a) Rosalind Franklin


(b) Franklin's X-ray diffraction photograph of DNA

核酸の構造と働き:DNAにおける塩基のつながり

[DNAの塩基組成(シャルガフ, 1950年)] A, T, G, Cの値は分子数の比(%)

生物名	A	Т	G	C	A÷T	G÷C
天然痘ウイルス	29.5	29.9	20.6	20.3	0.99	1.01
大 腸 菌	26.1	23.9	24.9	25.1	1.09	0.99
ウシの肝臓	28.8	29.0	21.2	21.1	0.99	1.00
ヒトの肝臓	30.3	30.3	19.5	19.9	1.00	0.98
ヒトの精子	31.0	31.5	19.1	18.4	0.98	1.04
バッタの精子	29.3	29.3	20.5	20.7	1.00	0.99

			ゲノムサイズ X1000	タンパク質指令 遺伝子数(推定
異核生物				-
出身都岛 Saccharomyces cerevisiae	最小のモデル真核生物	ブドウ果皮、ビー ル	12,069	M) 6300
シロイヌナズナ Arabidopsis thaliana	顕花植物のモデル生物	土壤と大気	M 142,000	#9 26,000
腺虫 Caenorhabditis elegans	発生を完全に記載できる単純な動物	主順	¥9 97,000	¥9 20,000
キイロショウジョウバエ Drosophila melanogaster	動物発生の遺伝学に貢献	腐りかけの果物	M9 137,000	#9 14,000
는 h Homo sapiens	最も精力的に研究されている哺乳類	果	M9 3.200,000	#9 24,000
ソノムソッスと確認す数は、特に問 ものタンパク質を生じるものが多い	間と古田園の場合。同じ様でも系統によって異 ので、ゲノムによって規定されるタンパク質の	民数は遺伝子数よりかなり	\$1.	Anna Carrent C