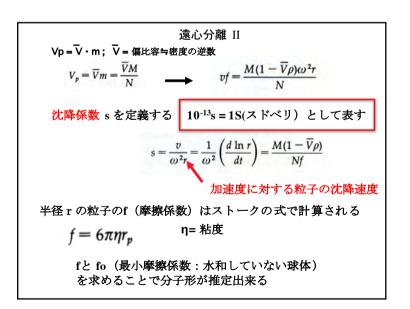
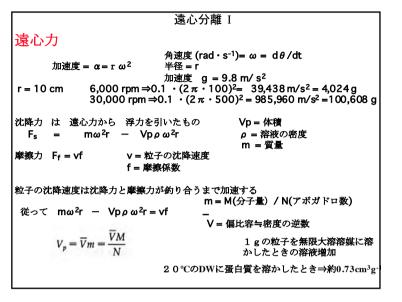
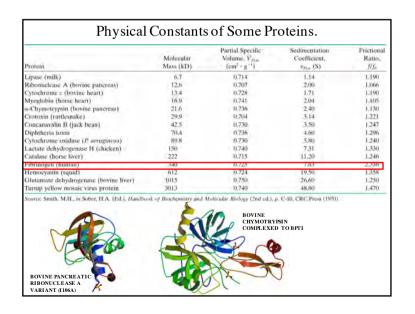
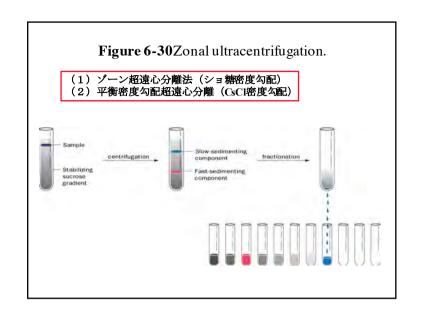
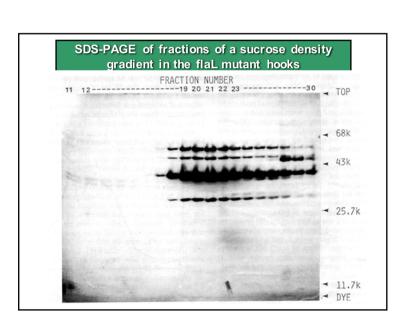

表1 代表的な	界面活性剤の特	寺職						
界面活性剤	分類	ミセル会合数	ミセル分 子量 (Da)	分子量 (Da)	CMC (mM)	CMC (% w/v)	曇 り点 (°C)	透析による除去す
Triton X-100	非イオン性	140	90,000	647	0.24	0.0155	64	田難
Trilon X-114	非イオン性	3	3	537	0.21	0.0113	23	因難
NP-40	非イオン性	149	90,000	617	0.29	0.0179	80	田剛
Brij-35	非イオン性	40	49,000	1225	0.09	0.1103	> 100	田難
Brij-58	非イオン性	70	82,000	1120	0.077	0.0086	> 100	田難
Tween-20	非イオン性	5	5	1228	0.06	0.0074	95	四雌
Tween-80	非イオン性	60	76,000	1310	0.012	0.0016	-	田難

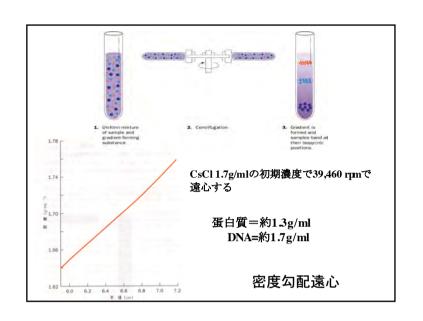

Octyl Glucoside	非イオン性	27	8,000	292	23 - 25	0.6716 - 0.7300	> 100	容易
Octylthio Glucoside	非イオン性	-		308	9	0.2772	> 100	容易
SDS	陰イオン性	62	18,000	288	6-8	0.1728 - 2304	> 100	容易
CHAPS	両イオン性	10	6,149	815	8 - 10	0.4920 - 0.6150	> 100	容易
CHAPSO	両イオン性	11	6,940	631	8 - 10	0.5048	90	容易











電気泳動の原理

 F_C (静電力) = qE

E =電場の強さ(電位)

q=電荷

 F_f (摩擦力) = vf v = イオンの速度

f = 摩擦係数

一定の電場では2つの力が釣り合うことになる。

qE = vf μ (移動度) = -v = -q

ν/E は電場の強さに対するイオンの速度を表す。理論 的な状態での話、蛋白質溶液の現実とは離れている。