清中研究室 KIYONAKA laboratory, Nagoya University 名古屋大学 大学院工学研究科 生命分子工学専攻

メンバー

金岡 英徳

学歴

職歴

現在に至る

原著論文

  1. Kojima Y., Okuzaki Y., Nishijima K., Moriwaki S., Asai S., Kaneoka H. and Iijima S. (2020) Regulatory mechanism of chicken lysozyme gene expression in oviducts examined using transgenic technology. J Biosci Bioeng. Online ahead of print. DOI: 10.1016/j.jbiosc.2020.11.01
  2. Hagihara Y., Okuzaki Y., Matsubayashi K., Kaneoka H., Suzuki T., Iijima S. and Nishijima K. (2020) Primordial germ cell-specific expression of eGFP in transgenic chickens.Genesis 58, e23388
  3. Tateyama H., Murase Y., Higuchi H., Inasaka Y., Kaneoka H., Iijima S., and Nishijima K. (2019) Siglec-F is induced by granulocyte–macrophage colony-stimulating factor and enhances interleukin-4-induced expression of arginase-1 in mouse macrophages.Immunology 158, 340-352
  4. Okuzaki Y., Kaneoka H., Suzuki T., Hagihara Y., Nakayama Y., Murakami S., Murase Y., Kuroiwa A., Iijima S. and Nishijima K. (2019) PRDM14 and BLIMP1 control the development of chicken primordial germ cells. Dev Biol. 455, 32-41
  5. Okuzaki Y., Kaneoka H., Nishijima K., Murakami S., Ozawa Y., and Iijima S. (2017) Molecular cloning of chicken TET family genes and role of chicken TET1 in erythropoiesis. Biochem Biophys Res Commun. 490,753-759.
  6. Okuzaki Y., Kidani S., Kaneoka H., Iijima S., and Nishijima K. (2017) Characterization of chicken interferon-inducible transmembrane protein-10. Biosci Biotechnol Biochem. 81, 914-921.
  7. Kidani S., Okuzaki Y., Kaneoka H., Asai S., Murakami S., Murase Y., Iijima S., and Nishijima K. (2017) Expression of interferon-inducible transmembrane proteins in the chicken and possible role in prevention of viral infections. Cytotechnology 69, 477-484.
  8. Kidani S., Kaneoka H., Okuzaki Y., Asai S., Kojima Y., Nishijima K., and Iijima S. (2016) Analyses of chicken sialyltransferases related to O-glycosylation. J Biosci Bioeng. 122, 379-384
  9. Kojima Y., Mizutani A., Okuzaki Y., Nishijima K., Kaneoka H., Sasamoto T., Miyake K., and Iijima S. (2015) Analyses of chicken sialyltransferases related to N-glycosylation. J Biosci Bioeng. 119, 623-628
  10. Tsuge M., Kaneoka H., Masuda Y., Ito H., Miyake K., and Iijima S. (2015) Implication of SUMO E3 ligases in nucleotide excision repair. Cytotechnology 67, 681-687
  11. Kojima Y., Wakita J., Inayoshi Y., Suzuki R., Yamada Y., Kaneoka H., Nishijima K., and Iijima S. (2014) Galactosylation of human erythropoietin produced by chimeric chickens expressing galactosyltransferase. J Biosci Bioeng. 117, 676-679
  12. Tsuge M., Masuda Y., Kaneoka H., Kidani S., Miyake K., and Iijima S. (2013) SUMOylation of damaged DNA-binding protein DDB2. Biochem Biophys Res Commun 438, 26-31
  13. Okino Y., Inayoshi Y., Kojima Y., Kidani S., Kaneoka H., Honkawa A., Higuchi H., Nishijima K., Miyake K., and Iijima S. (2012) Moloney murine leukemia virus integrase and reverse transcriptase interact with PML proteins. J Biochem. 152, 161-169
  14. Itoh T., Miyake K., Yamaguchi T., Tsuge M., Kaneoka H., and Iijima S. (2011) Constitutive expression of the brg1 gene requires GC-boxes near to the transcriptional start site. J Biochem. 149, 301-309
  15. Kaneoka H., Miyake K., and Iijima S. (2009) Interactions between the nuclear matrix and an enhancer of the tryptophan oxygenase gene. Biochem Biophys Res Commun 387, 717-722
  16. Kaneoka H., Miyake K., and Iijima S. (2008) GATA4 inhibits expression of the tryptophan oxygenase gene by binding to the TATA box in fetal hepatocytes. Cytotechnology 57, 123-128
  17. Morshed M., Ando M., Yamamoto J., Hotta A., Kaneoka H., Kojima J., Nishijima K., Kamihira M., and Iijima S. (2006) YY1 binds to regulatory element of chicken lysozyme and ovalbumin promoters. Cytotechnology 52, 159-170
  18. Sato Y., Miyake K., Kaneoka H., and Iijima S. (2006) Sumoylation of CCAAT/enhancer-binding protein alpha and its functional roles in hepatocyte differentiation. J Biol Chem. 281, 21629-21639
  19. Inayoshi Y., Miyake K., Machida Y., Kaneoka H., Terajima M., Dhoda T., Takahashi M., and Iijima S. (2006) Mammalian chromatin remodeling complex SWI/SNF is essential for enhanced expression of the albumin gene during liver development. J Biochem. 139, 177-188
  20. Miyake K., Takahashi M., Dhoda T., Kaneoka H., Sato Y., Inayoshi Y., Kamihira M., and Iijima S. (2005) Transcriptional regulation of the a-fetoprotein gene by SWI/SNF chromatin remodeling complex. Cytotechnology 49, 143-151
  21. Inayoshi Y., Kaneoka H., Machida Y., Terajima M., Dhoda T., Miyake K., and Iijima S. (2005) Repression of GR-mediated expression of the tryptophan oxygenase gene by the SWI/SNF complex during liver development. J Biochem. 138, 457-465
  22. Dhoda T., Kaneoka H., Inayoshi Y., Kamihira M., Miyake K., and Iijima S. (2004) Transcriptional coactivators CBP and p300 cooperatively enhance HNF-1α-mediated expression of the albumin gene in hepatocytes. J Biochem. 136, 313-319

その他論文

  1. Kaneoka H., Miyake K., and Iijima S. (2007) Nuclear structures regulate liver-specific expression of the tryptophan oxygenase gene. Animal Cell Technology:Basic & Applied Aspects
  2. Takahashi, M., Dhoda, T., Kaneoka, H., Sato, Y., Inayoshi, Y., Miyake, K., Kamihira, M., and Iijima, S. (2006) Transcriptional regulation of the α-fetoprotein gene in hepatocytes. Animal Cell Technology:Basic & Applied Aspects

総説・解説等

  1. 三宅克英、金岡英徳 (2009) 転写因子のSUMO化による機能制御 化学と生物 vol. 47 845-852

受賞

  1. 2018年度日本動物細胞工学会奨励賞
    受賞研究題目「生体機能を調節するタンパク質翻訳後修飾の解析」

研究分野

タンパク質翻訳後修飾による生体機能制御の解明

  1. SUMO化修飾による細胞内分子集合の制御
    SUMO化修飾はタンパク質の安定性、細胞内局在、タンパク質間相互作用などを制御することにより様々な生体機能の調節を行なっている。生体反応の際に起こる複雑な分子集合制御メカニズム解明のためDNA修復機構をモデルとして解析を行なっている。
  2. 糖鎖修飾改変によるインフルエンザワクチン生産の効率化
    CRISPR/Cas9に代表されるゲノム編集技術とトランスジェニックニワトリ作製技術を組み合わせて、糖鎖改変ニワトリによるインフルエンザワクチンの効率的な生産を目指している。